Stable Isotope Ecology

Chapter 1 Introduction
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The Russian chemist, Dmitri Mendeleyev, was the first to observe that if elements were listed in
order of atomic mass, they showed regular [periodical repeating properties. He formulated his
discovery in a periodic table of elements, now regarded as the backbone of modern chemistry.
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The crowning achievement of Mendeleyev’s periodic table lay in his prophecy of then, undiscovered
1.0 elements. In 1869, the year he published his periodic classification, the elements gallium,
TNOBLE 455 | germanium and scandium were unknown. Mendeleyev left spaces for them in his table and even
predicted their atomic masses and other chemical properties. Six years later, gallium was
discovered and his predictions were found to be accurate. Other discoveries followed and
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Element Symbol Percentage in
Body
Oxygen O 65.0
Carbon C 18.5
Hydrogen H 9.5
Nitrogen N 3.2
Calcium Ca 1.5
Phosphorus P 1.0
Potassium K 0.4
Sulfur S 0.3
Sodium Na 0.2
Chlorine Cl 0.2
Magnesium Mg 0.1

Trace elements include boron (B), chromium (Cr)
cobalt (Co), copper (Cu), fluorine (F), iodine (1),
iron (Fe), manganese (Mn), molybdenum (Mo),
selenium (Se), silicon (Si), tin (Sn), vanadium (V)
and zinc (Zn).
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|Isotopes
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Isotope 095>
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Fission yields
An example of one of the many fragments of
reactions in the uranium-235 intermediate
mass, an average
of 2.4 neutrons,
and average
energy about
215 MeV.

fission process.

Impact by n
slow neutron 1 (3) ‘o
with energy compound ol O

on order of nucleus is Neutrons can
an eV unstable, initiate a chain

oscillates. reaction.
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carbon-12 carbon-13 carbon-14
98.9% 1.1% <0.1%

6 protons 6 protons 6 protons

6 neutrons / neutrons 8 neutrons

e

College of Marine Sciences, Shanghai Ocean University



Isotopes and Their Elements

m Frederick Soddy first
introduced the term “isotope”
in a formal way during a
speech to the British Royal
Society on Feb 27, 1913. He
won the 1921 Nobel Prize in
Chemistry for “his
investigations into the origin
and nature of isotopes”.
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Stable isotope
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Stable isotope 0>
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WE SAY THAT THERE IS A

= Stable isotopes are safe
isotopes that do not decay and
unlike the radioactive isotopes,
are not at all hazardous to -
human health. In fact, stable MORE NEUTRON THAN ¢ e
. . 2CARBON IN ITS NUCLEUS. _ .
isotopes are quite abundant

and natural parts of each one of IN MOST CASES '2CARBON AND '3CARBON
BEHAVE THE SAME BECAUSE EXTRA NEUTRONS

US. DON'T CHANGE THE REACTIVE SPHERE OF
ELECTRONS AROUND THE NUCLEUS.
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i o SEscHOoN WHATS ONE.

J MORE. NEUTRON
% r—z,;;;’ MORE OR.
'( LESS ?




Stable Isotope
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14.00307
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12C

12.00000
98.89%
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160

15.9949
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16.9991
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Stable
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anthropogenic
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You Are What You Eat
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Element Symbol Percentage in
Body
Oxygen 0] 65.0
Carbon C 18.5
Hydrogen H 9.5
Nitrogen N 3.2
Calcium Ca 1.5
Phosphorus P 1.0
Potassium K 0.4
Sulfur S 0.3
Sodium Na 0.2
Chlorine Cl 0.2
Magnesium Mg 0.1

Trace elements include boron (B), chromium (Cr)
cobalt (Co), copper (Cu), fluorine (F), iodine (1),
iron (Fe), manganese (Mn), molybdenum (Mo),
selenium (Se), silicon (Si), tin (Sn), vanadium (V)
and zinc (Zn).
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Mixing and Fractionation [0S
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SOMETIMES THE EXTRA NEUTRON MAKES
A DIFFERENCE. IT'S HARDER TO PUSH THE
HEAVY MOLECULES UP AN ENERGY HILL...

The extra neutron does make a
very slight difference in some
reactions; having an extra
neutron usually results in slower

... SO THAT PRODUCTS HAVE MORE OF THE . ) )
LIGHT ISOTOPE AND LESS OF THE HEAVY reactions. This reaction

ISOTOPE. difference is fractionation.
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Mixing and Fractionation [0)
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= In kinetic reactions, the light isotopes usually react faster.

= In exchange reactions, heavy isotopes concentrate where
bonds are strongest.

Fractionation

Fractionation

o 4
Source 1

_ n

Fractionation splits apart mixtures to form source materials.
These sources recombine via mixing. There is a strong general
analogy between isotopes and colors, so that isotopes can be
thought of as dyes or tracers. In this color example, fractionation
separates green into yellow and blue components, with
conversely yellow and blue mix to form green.

College of Marine Sciences, Shanghai Ocean University



Fractionation 0) (&5

LiBExS s

sssssssssssssssssssss

Fractionation: higher atomic mass means they are
conserved during chemical reactions (evaporation,
assimilation)

In kinetic reactions, the light isotopes usually react faster

In exchange reactions, heavy isotopes concentrate where
bonds are strongest.

The isotope ratio of a consumer will reflect that of its prey
Used to infer ecological activities or animal migration.
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What is fractionation? [0)
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= Fractionation occurs during reactions and is commonly
denoted by the Greek symbol A.

= The simplest equation of fractionation applies to a reaction
where a product is formed from a source material,

BPR(:)DU(:.‘T — USOURCE — A,

A= BSOLJRCE — BPRODI_JCT'
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Mixing and Fractionation 0)
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Steady
State Pool

Divide Unite
Split out Lump together

Select out Put Back
Subtraction/Loss Addition/Gain

Segregate Aggregate

Discriminate Randomize
Separate Combine

Fractionate Mix
Processing
between pools

with both
losses and gains

Fractionation and mixing together control isotope cycling and circulation. There are many words to use when
thinking about isotope “fractionation” or “mixing”, and as long as you remember that these words do not imply
human intervention, control or intent, most of these words can help you understand isotope cycling.
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Why is fractionation useful 0)

LibGiELS

sssssssssssssssssss

Initial Later

Precipitation Precipitation
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5'%0 =-12%0 5"%0 =- 15%0

O=-17%0

5'H=-87%o *H=-112%0 . /1) $*H=-128%0
Vapor Vapor ' Vapor

- L Samg

Evaporation

Continent
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Terminology-Delta notation

Stable isotope measurement are presented as ratio relative to a known standard

a a
R -"R
: 14 1% 1000
Rstd
} (o .
8 Csumpe = | 3e- -1 %1000
\ (W)Reference J

0°X =
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Why are stable isotope useful

32S 33S 34S SBS
. . | | |
= 5 most commonly used isotopes in

ecological research are carbon (*3Q), 0 | "0 I "0
nitrogen (*>N), hydrogen (2H), oxygen (*30) Soen || ‘Goa% || oo
and Sulphur (34S). ‘““""MN o
= Eachisotope can be used to infer different oo | | 15000
ecological relationship.

'H | 'H | °H
1.00794 2.0141
99.985% 0.015% t¥2=12.32yrs

Stable Stable Cosmogenic/
anthropogenic

“C || "C || “C
12.00000 13.00335 14.0
98.89% 1.11% t's = 5715yrs

Stable Stable Radioactive
Cosmogenic/
anthropogenic
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Reference Standards

Standard Mean Ocean Water  2H/*H 0.00015576 0.15574 99.984426
SMOW OO 0.0003799 0.03790 99.76206
180/160 0.0020052 0.20004 99.76206
PeeDee Belemnite (PDB) 13C/12C 0.011180 1.1056 98.8944
and Vienna-PDB (VPDB) 170/1%0 0.0003859 0.0385 99.7553
LO)RC 0.0020672 0.2062 99.7553
Air (AIR) I5N/E4N 0.0036765 0.36630 99.63370
Canyon Diablo Troilite (CDT) 33S/32S 0.0078772 0.74865 95.03957
and Vienna-CDT LSS 0.0441626 4.19719 95.03957
SRS 0.0001533 0.01459 95.03957
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Stable isotope in trophic ecology

You are What you eat (X a little bit)
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Isotope Circulation in the Biosphere /0. &>
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= Photosynthesis is one of the important reactions governing
isotope circulation in the biosphere.
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Nitrogen (6*>N) 0) (=
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Eodogy, S33) 2002, pp. H3-TIS
© 2002 by the Ecologieal Socicry of America

USING STABLE ISOTOPES TO ESTIMATE TROPHIC POSITION:
MODELS, METHODS, AND ASSUMPTIONS

-
N

Davip M, Post!23

Depariment of Ecology and Evolutionary Biology, Corson Hall, Cornell University, Tthaca, New York 14853 USA
‘Tastitute for Ecosystent Studies, Box AB. Millbrook, New York [2545 USA
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Number of observations

o N OB~ O
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Enrichment in §"°N per trophic level
(8"°N - 3°N...; %o)

consumer diet?

Enrichment = 3.4%o. per trophic level
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Nitrogen (6*°N)
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Nitrogen (6*°N)
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Nitrogen (6*°N)
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Nitrogen (6*°N)
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Nitrogen (6*°N)
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Nitrogen (6*°N) 0) =&

FA%

on

A High ctivi Acknowledgements
tha and J. Hu for ¢

& productivity . - " ‘ e POPAE pOsTon | nath’ ._ Be .

# Low productivity o - o erals should bead ' ey oo .m': Ehur;-g,".

siti

Ecosystem size determines
food-chain length in lakes

David M. Pos1* 7, Michael L. Pacet & Nelson G. Hairston Jr*
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Food chain length and maximum
trophic position are positively related
to ecosystem size.

5

Medium lakes

Maximum trophic po

10" 10° (
Productivity (TP, ug I-7) Post et al. 2000, Nature
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Nitrogen (6*°N)

= Large isotope contrasts might be expected between lakes in
which primary production is limited by N (little fractionation
by phytoplankton) versus P (abundant N — large possible
fractionations during N uptake by phytoplankton).Where
phytoplankton have different *>5N values than terrestrial
vegetation, the nitrogen isotopes may function as source
markers for organic pollution.

= This approach has been successfully applied in marine
environments. There is a wide range reported for nitrogen

Isotope

College of Marine Sciences, Shanghai Ocean University



: & '
P S [
(-l"' ALISTRALLA . . .
ﬁ. \3
IL-—"" _'_'*-.ra,L 0

ot —
A Kilometers

SN values of algae in Moreton Bay, Australia. High 31°N values along the western shore indicate N pollution
inputs from watershed rivers and local sewage treatment facilities. The coastal pollution plumes are hard to
identify by conventional measurements of ammonium and nitrate nutrients, because tides rapidly disperse
nutrients and algae use up the nutrients during growth in algal blooms of the region. But the isotope values
persist as nutrients are incorporated into the algae, tracing the nitrogen linkage to coastal inputs. Results are
contoured for macroalgae that were incubated 4 days in situ at approximately 100 sites in September 1997,
then analyzed for 6°N (Costanzo et al. 2001). This 8°N work continues now as a monitoring technique termed
“sewage plume mapping” (Costanzo et al. 2005).



The Carbon Cycle 0) &>
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= The carbon cycle involves active exchanges of CO2 among
the atmosphere, terrestrial ecosystems and the surface
ocean.

= The 613C value of atmospheric CO2 is decreasing in response
to inputs of 3C depleted CO2 from fossil fuel plus biomass
burning and decomposition. Over the past 100 years the
decrease may have been almost 1%o, from about —7%o to
—-8%0. Carbon uptake by the dominant C3 plants on land
involves a net fractionation of about 20%0 between the
atmospheric CO2 and plant biomass (-28%o0). Carbon uptake
by C4 plants, mainly tropical and salt grasses, involves a small
net fractionation of about 5%o.

College of Marine Sciences, Shanghai Ocean University



The Carbon Cycle

= The exchange of CO2 between the atmosphere and the
surface of the ocean involves an equilibrium chemical
fractionation between atmospheric CO2 (-8%o0) and the total
CO2 (2CO2, mostly bicarbonate) in surface ocean water
(about 1%00).

» The withdrawal of carbon to form carbonates involves small
isotope fractionations whereas uptake of dissolved inorganic
carbon in planktonic photosynthesis involves larger kinetic
fractionation that results in algal values of about —19 to
-24%o0. Both the dissolved and the particulate organic matter
in the oceans predominantly have a marine planktonic origin.

College of Marine Sciences, Shanghai Ocean University
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Carbon (6%3Q)

A 4

Littoral

College of Marine Sciences, Shanghai Ocean University

Pelagic <



Carbon (6%3Q)
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Sulfur (834S) D (&

L&BEARSE

Occolo 2004) 138: 161-167
DOI 10.1007/500442-003-1415-0

METHODS

Rod M. Connolly - Michaela A, Guest -
Andrew J. Melville - Joanne M. Oakes

Sulfur stable isotopes separate producers in marine food-web
analysis
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Hydrogen (62H)
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Hydrogen (02H)

SHANGHAI OCEAN UNIVERSITY

URING TERRESTRIAL SUBSIDIES TO AQUATIC FOOD WEBS USING
STABLE ISOTOPES OF HYDROGEN

Powerful tool in river ecology
Limited applications in marine (to date...)

College of Marine Sciences, Shanghai Ocean University
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Identifying migrations in marine fishes through
stable-isotope analysis

C. N. TrRueman®, K. M. MacKENzZIE AND M. R. PALMER

Ocean and Earth Scien ) weraphy Centre, Souwthampion, University
s ! " T .
of Southampton, front Ca Southampton SO14 37H, UK.
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Analysis sequence from close to the
otolith nucleus at the left hand side
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Oxygen (6*%0) 0)
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Natal Homing in a Marine Fish
Metapopulation

Simon R. Thorrold,"*f Christopher Latkoczy,? Peter K. Swart,?
Cynthia M. Jones’

T Wy Natal location
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6180 = (((**0/**0 of a sample)/(*¥0/*°0 of a standard))-1) x 1000
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6180 = (((*30/**0 of a sample)/(*¥0/**0 of a standard))-1) x 1000
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You are Where you eat.
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Isoscape

You are Where you eat.

Initial Later
Precipitation Precipitation
8'%0 =-12% - = h
o2 VP 2 F~
OH=-87%e ./ ™) O'H=-112%0 /|
Vapor \

- W

Vapor

- 8'%0 =-3%0"

*H=-14%o

g Rain
Evaporation et
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Isotope map of North America for
precipitation 6D values. Plant and
animal 6D values reflect this
continental-level map.

Fry B. 2006. Stable Isotope Ecology




Isoscape
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Isoscape

8180 (hair)

B i5.1-16
B 14.1-15
[ ]13.1-14
[ ]121-13
] 11a-12
B 10.1-11
B o110
B s

B 75

Figure 11

8'®0 isoscape for modern human hair. Map values are estimated based on a modeled isoscape for tap water
and a regression model relating observed hair and drinking-water isotope ratios from sample sites in 18
states. Figure reprinted from Ehleringer et al. (2008).
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Tissue turnover rates

You are When you eat!
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Tissue turnover rates

) Qecologia (1999) 120:314-326
Recent Arrival : Intermediate - Resident

(days) : (weeks/months) 'f {months/years)
: : Habitat

---.8 . : B Keith A. Hobson
2. Liver/Plasma —— . . . . .
% | Lo Tracing origins and migration
® Muscle/Blood cells : of wildlife using stable isotopes: a review
8
(=

-*— molt

Habitat
A

Feather/Hair

Time

Fig. 2 Depiction of the changes in stable isotope (X) values expected
when a bird or mammal hypothetically moves between biomes
(Habitat A vs Habitat B) that are isotopically distinct. Contrasting
stable isotope values across tissues can provide information on the

residency time of an individual in habitat B providing tissue turnover
rates and times of molt are known
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Tissue turnover rates

FIGURE 1.

(vertical lines) and sample sizes are n

Time (d)

Stable-carbon isotope exponential models for quail tissues. Data are means {closed circles) + SD

3 for each point.

Time (d)
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ASSESSING AVIAN DIETS USING STABLE ISOTOPES I:
TURNOVER OF 3C IN TISSUES!

College of Marine Sciences,

Shanghai Ocean University




-

Tissue turnover rates [0)

Timeframe Tissue

Hours Breath, stomach content
Days Blood plasma, scat
Weeks Liver, organ

Month - Season Muscle, blood (whole), hair, fur,
feather, collagen

Lifetime Bone carbonate, inert materials
(scale)

College of Marine Sciences, Shanghai Ocean University



Sampling

= Sample prey items over a longer time frame than consumers

= Sample consumers at end of growing season to reflect
resource use through that period.

College of Marine Sciences, Shanghai Ocean University



Compound- Specific Stable Isotope /jo) -

= For highly migration animals

= Protein
Amino acids (AA)

Carbon/nitrogen bond cleaved causing
enrichment of 1°N during metabolism
These AA enriched in >N through food
web

Eg: Glutamic, alanine, aspartic acid

o
—_
o
-
[ 4 :-J
ey
L
=
=
=
=
&
—
=
=
o
—
‘,?_]

Libibitx%
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Source

McClelland

Do not undergo transamination
reactions during metabolism

Retain 6°N composition of base food
web

Eg: Phenylalanine, lysine, threonine

College of Marine Sciences, Shanghai Ocean University



Leatherbacks (Dermochelys coriacea)

- Nest in tropical beaches
- Display natal beach homing
- Forage over vast areas at high latitudes

- Exclusively feed on gelatinous prey

Leatherback Sea Turtle Range
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Challenge of bulk isotopes: Leatherbacks in Pacific

12 donesia
10
3
€ 97
=
5 g
2 n=64
5 4]
e
2 4
s W) | ——
8 16 18
table piitrogen (8J°N) in (%o)

Sepfinoff & Benson unpublished data

Interpretations:
1. Two feeding populations feeding at different trophic levels (~3%o. difference)

2. Two feeding populations feeding in areas with different nitrogen cycling regimes

THIS IS AJOB FOR AA-CSIA!



Application of AA-CSIA: Leatherbacks in Pacific

Number of turtles

0o A | .
/ bi# nitrogen (5 k [%\
Derivatized AA
Skin samples: Analyzed GC-IRMS
Source AA: phe =4.2 £ (.7 %o Source A.3 %0
Trophic AATS= * 0.4 %o Trophic AA™E A+ 0.1 %o

615NG,u - 615Nphe -34
+1

TPGIu-Phe = s

Trophic Position (AA) =2.33£0.1 Trophic Position (AA) =2.36 £ 0.1




Application of AA-CSIA: Trace different sources of N

Map of N* for the Pacific

From: Pennington &t al 2006

Source AA: phe =4.2 Source AA: phe=7.2

N* is a Redfield N:P ratio derived such that:
N* > 1 nitrogen fixation dominates (6'°N <5 %o)
N* < 1 denitrifcation dominates (6°N = 5-15 %)




Isotopes and food webs

= You are How you eat!

College of Marine Sciences, Shanghai Ocean University



Trophic niche----Trophic level 02

Libibitx%

SHANGHAI OCEAN UNIVERSITY

Yellow bird inhabits
upper tree regions

Red bird inhabits
middle boughs of tree

Blue bird inhabits
trunk and lower branches

Flowener Phytoplankton

College of Marine Sciences, Shanghai Ocean University



Trophic niche----Diet

Resource Partitioning: Species alter their use of the niche to avoid competition, by dividing resources among them

Flamingos Ducks Avocets Oyster catchers Plovers

= Organisms can forage at the same trophic level but feed on
different prey types

College of Marine Sciences, Shanghai Ocean University
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Trophic Niche----Niche width

Specialist Generalist

Narrow niche width Broad niche width
-Herbivore -Omnivore
-Carnivore

College of Marine Sciences, Shanghai Ocean University



Trophic Niche- Food web

Specialist

Trophic level

Generalist

Pelagic

Benthic

College of Marine Sciences, Shanghai Ocean University



REVIEWS REVIEWS

A niche for isotopic ecology

Seth D Newsome'*, Carlos Martinez del Rio?, Stuart Bearhop®, and Donald L Phillips*

Fifty years ago, GE Hutchinson defined the ecological niche as a hypervolume in n-dimensional space with
environmental variables as axes. Ecologists have recently developed renewed interest in the concept, and tech-
nological advances now allow us to use stable isotope analyses to quantify these niche dimensions. Analogously,
we define the isotopic niche as an area (in d-space) with isotopic values (3-values) as coordinates. To make iso-
topic measurements comparable to other niche formulations, we propose transforming 3-space to p-space,
where axes represent relative proportions of isotopically distinct resources incorporated into an animal’s tissues.
We illustrate the isotopic niche with two examples: the application of historic ecology to conservation biology
and ontogenetic niche shifts. Sustaining renewed interest in the niche requires novel methods to measure the
variables that define it. Stable isotope analyses are a natural, perhaps crucial, tool in contemporary studies of
the ecological niche.

Front Ecol Environ 2007; 5(8): 429-436, doi:10.1890/060150.01

Ecology, 88(1), 2007, pp. 42-48
© 2007 by the Ecological Society of America

CAN STABLE ISOTOPE RATIOS PROVIDE FOR COMMUNITY-WIDE
MEASURES OF TROPHIC STRUCTURE?

- 2 o~ ~ .
CRAIG A. LAYMAN."® D. ALBREY ARRINGTON.” CARMEN G. MONTANA.> AND DaviD M. Post?

"Marine Science Program, Department of Biological Sciences, 3000 NE 151st Street, North Miami, Florida 33181 USA
2Loxahatchee River District, 2500 Jupiter Park Drive, Jupiter, Florida 33458-8964 USA
3Universidad de Los Llanos Ezequiel Zamora, UNELLEZ, Guanare, Apartado Postal 3310 Venezuela
*Department of Ecology and Evolutionary Biologv, Yale University, New Haven, Connecticut 06520-8106 USA
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1. NR
&*N range- Trophic height of food web
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1. NR
&*N range- Trophic height of food web

.. CR
613C range- Breadth of resource use

College of Marine Sciences, Shanghai Ocean University
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NR
&*N range- Trophic height of food web

CR
613C range- Breadth of resource use

TA
Total area-Size of food web in 6 space.
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NR
&*N range- Trophic height of food web

CR
613C range- Breadth of resource use

TA
Total area-Size of food web in 6 space.

@b)
Mean distance to centroid
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NR
&*N range- Trophic height of food web

CR
613C range- Breadth of resource use

TA
Total area-Size of food web in 6 space.

@b)
Mean distance to centroid

NIND;
Mean nearest neighbor distance
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NR
&*N range- Trophic height of food web

CR
613C range- Breadth of resource use

TA
Total area-Size of food web in 6 space.

@b)
Mean distance to centroid

NIND;
Mean nearest neighbor distance

SDNND
SD nearest neighbor distance
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“Generalist” population:
1) Allindividuals have variable diet




“Generalist” population:
2) Individual specificity in diet




0'°N - 813C Bi-plots as “Niche” Space

0"°N

Position in bi-plot space a representation of that species trophic niche

Core Question #2



High Degree of Intraspecific Niche Variation
Suggests Individual Specialization




Trophic Niche Width

This variation is a
reflection of niche
width

Total Area (TA) of the
convex hull
encompassing all
individuals in niche
space

o"°N

013C

One of a series of metrics to quantitatively describe food
web structure

Layman et al., 2007, Ecology
Layman and Post, 2008, Ecology

Core Question #2



Niche Width Across Fragmentation Gradient

% Fragmented Niche Width

13
A o 8.9
51 2.5
11 A 99 0.6
<
s
° 0|
9
v 13 from each
16 14 49 10 creek system
o13C

Core Question #2 Layman et al., 2007, Ecology Letters



Snapper niche diversity tracks diversity of prey

resources
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2 02 Unfragmented System
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Core Question #2
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Layman et al. Unpublished Data
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Jackson ellipse 0. (S
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CAN STABLE ISOTOPE RATIOS PROVIDE FOR COMMUNITY-WIDE
MEASURES OF TROPHIC STRUCTURE?

CRAIG A. LAYMAN."® D. ALBREY ARRINGTON.” CARMEN G. MONTANA.> AND DaviD M. Post?

"Marine Science Program, Department of Biological Sciences, 3000 NE 151st Street, North Miami, Florida 33181 USA
*Loxahatchee River District, 25( §-¢
SUniversidad de Los Lianos Ezequiel Zamora, UNELLEZ, Guanare, Apartado Po
*Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520-8

Journal of Animal Ecology

Journal of Animal Ecology 2011, 80, 595-602 doi: 10.1111/5.1365-2656.2011.01806.x

Comparing isotopic niche widths among and within
communities: SIBER - Stable Isotope Bayesian Ellipses

inR

Andrew L. Jackson™, Richard Ingerz, Andrew C. Parnell® and Stuart Bearhr:)p2

"Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland:?Centre for Ecology &
Conservation, School of Biosciences, University of Exeter, Cornwall Campus, Penryn, Cornwall, TR109EZ, UK; and

3Department of Statistics, School of Mathematical Sciences, University College Dublin, Dublin 4, Ireland _ _
ean University




Jackson ellipse

TA — Total niche
SEA — Realised




SIA using R

MixSIAR

SIBER

SIDER

SIAR
Http://github.com/AndrewLJackson
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Experimental design /¢

19122012 \7, &
&GiExSE L

nnnnnnnnnnnnnnnnnnnnnn

What is your question?

Diet, migration, trophic interactions
Individual, population, community, ecosystem
Seasonal variation

Know your system?

Which & how many isotopes, better resolution with more
than C& N

Baselines

College of Marine Sciences, Shanghai Ocean University



Baselines 0) &

LEBELSE S

nnnnnnnnnnnnnnnnnnnnnn

The foundation of every isotope study
Strong baseline supports stone results

Devote time, effort and $$$ to developing a thorough and
reliable baseline

Sample primary producers
Collect invertebrates at lowest feasible taxonomic level
Include temporally significant resources (MDN)?

College of Marine Sciences, Shanghai Ocean University
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All preservation methods effect isotope ratios, but some
have a greater effect than others...

Drying (48hrs 60°C)
Freezing (Best way)
Ethanol and Formalin (No)

College of Marine Sciences, Shanghai Ocean University



SIA applications in SHOU

m Freshwater ecosystem
Lake fish
Lake Food web structure

= Marine Ecosystem
Squids
Sharks

College of Marine Sciences, Shanghai Ocean University
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Fig.2 Relationship between Cultrichthys erythropterus weight and standard length (a), muscle 6"*C and standard length and
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Chinese Journal of Oceanology and Limnology <>
= e Meetliang Bay

‘ East Taibw Lake
hittpe/fdx.doi.org/ 10.1007/500343-01 T-6225-2

Spatial variations in food web structures with alternative
stable states: evidence from stable isotope analysis in a large
eutrophic lake*

LI Yunkai (25 z L)%, ZHANG Yuying (K802 XU Jun (2%, ZHANG Shuo (55R0)-**

25

= = = = Meiliang Bay

=re=-a= Ensi Tailu Lake

4

Fig3 Mean values (£50) of 8N and 3°C of species sampled in Meiliang Bay (MB) (hollow diamond) and East Taibu Lake
{ELT) {black diamond) {a): total area {convex hull area) of N and §°C bi-plots of MB and ETL of Taibhu Lake {b)

T
-4
enyrhraprerus; % Pelieobagras fubvidrace;
A0 el sarichrky mobilis; 9 Hypaphholmichniys molurie; 10 Eopalaemon modesne; 11: Sellamya

wvdmglic |4: Linio dowglasiae: |3: Anodonta woodiana; 16: Zooplaskson; 17: Phytoplankios; 15:
Fig.2 6N and &'%C values of organisms sampled in Meiliang Bay (MB) and East Taibu Lake (ETL)
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Squid
A

Different isotopic trends between sex

14
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2 E 121 Female
N’ N’
) o Male
2= o
-18 4
81
-20 T T T T T 4 T T T T T
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Age (d)

Age (d)
Submitted to Canadian Journal of Fisheries and Aquatic Sciences

female n=12; male n=13; N=232
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Squid
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Sexual Segregation in trophic niche
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Urea and lipid extraction treatment effects on '°N and $"*C
values in pelagic sharks

Yunkai Li"?, Yuying Zhang?, Nigel E. Hussey® and Xiaojie Dai'*

'College of Marine Sciences, Shanghai Ocean University, 999 Huchenghuan Rd., Shanghai 201306, China

2Marine Sciences Program, School of Environment, Arts and Society, Florida International University, 3000 NE 151st, North
Miami, FL 33181, USA

2Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Avenue, ON, NSB 3P4, Canada
_______________________________________________________________________]

RATIONALE Stable isotope analysis (SIA) provides a powerful tool to investigate diverse ecological questions for marine
species, but standardized v. 111:(“, are required for comparative assessments. For cl'tsmnbl"lnchs their unique osmoregulatory
strategy involves retention of ""N-depleted urea in body tissues and this may bias 8'°N values. This may be a particular
problem for large predatory species, where "N discrimination between pre dator and consumed prey can be small.
METHODS: We evaluated three treatments (deionized water rinsing [DW], chloroform/methanol [LE] and combined
chloroform /methanol and deionized water rinsing [LE+DW]) applied to white musde tissue of 125 individuals from
seven pelagic shark species to (i) assess urea and lipid effects on stable isotope values determined by IRMS and
(ii) investigate mathematical normalization of these values.

RESULTS: For all species examined, the 5'”N values and C:N ratios increased significantly following all three treatments,
identifying that urea removal is required prior to SIA of pelagic sharks. The more marked change in 3"°N values
following DW (1.3 + ( ) and LE+DW (1.2 + (.6 %) than following LE alone (0.7 + (.4 %) indicated that water rinsing
was more effective at removing urea. The DW and LE+DW treatments lowered the %N values, resulting in an increase in
C:N ratios from the unexpected low values of <26 in bulk samples to ~3.1 (.1, the expected value of protein. The §°C
values of all species also increased Lqg;mfi("lnrlv following LE and Ll-_ +DW treatments.

CONCLUSIONS: Given the mean change in 3N (1.2 £ 0.6%0 )and 313C values (0.7 £ 0.4% ) across pelagic shark spedes, itis
recommended that muscle tissue samples be treated with LE+DW to cf‘fmc ntly extr; ‘Lc'rbnth urea and lipids to standardize
isotopic v; 111:(\ \r11rh(‘m1r1(11 normalization of urea and lipid-extracted 8N g ow and 83C, g, values using the lipid-
extracted 5N, r and 8'C, - data were established for all pelagic shark species. Copyright © 2015 John Wiley & Sons, Ltd.

The stable isotope ratios of carbon (3°C) and nitrogen (3'°N)  carbohydrates!"! consequently, the higher the tissue lipid
in shark tissues provide a powerful tool to investigate  content, the more negative the 3°°C value of the organism
important ecological questions regarding movement,!'?! irrespective of diet or foraging location. Lipid removal or
foraging strategies, ™! trophic position!*® reproduction!”  correction is therefore recommended to standardize data
and multi-species interactions [’ Their application is based among species within a food web!™®! This procedure is
on the premise that, as predators consume prey, the cartbon  widely adopted across a range of aquatic animal omuEf,
and nitrogen stable isotope ratio values of those predators uu]udmv teleost fish,!'""'%] tepha opods,!™! crustaceans,! ™!
fractionate systematically lhrmmhnul the food web. marine mamma]s ! and elasmobranchs ['22%

Specifically, the cha nge in 3"°C \'a]LlPR of the predator are Compared with most aquatic species, elasmobranchs adopt
conservative (0-1%), relative to the prey eaten, allowing a unique osmoregulation mechanism.?* Elasmobranchs

identification of basal productivity orforaging locations;! "%l maintain urea (CO(NH);) and trimethylamine oxide

while the 8°N values show a more prominent increase per
trophic step (2-5%), providing a method to quantify the
trophic position (TP) of predators and to estimate food
chain ]englh,l“" Al

When examining carbon stable isotope ratios, lipids in
animals’ tissues are a source of measurement uncertainty.""
Lipids are depleted in “C relative to protein ‘and

L
* Correspondence fo: X. ]J. Dai, College of Marine Sciences,
Shanghai Ocean University, 999 Huchenghuan Rd,
Shanghai 201306, China.
E-mail: xjdai@shou.edu.cn

(TMAQ; CsHgNQ) in their tissues for osmotic balance. These
soluble nitrogenous compounds may artificially lower 8N
values in shark tissues confounding data interpretation as
they are considered to be r‘,\]fdepleled,l”" %1 Furthermore,
inter/intra-specific variations in the concentrations of urea
and TMAQ in body tissues of different species/life-stages
that fluctuate depending on ambient salinity can bias
comparisons among species!” 2 This may be a particular
problem  for ]aroe predatory species, where &N
discrimination L\elween predator and consumed prey can be
small.P% Similar to lipid extraction, the removal of urea and
TMAQ from shark muscle is therefore recommended prior
to S1A %!

Rapid Commun. Mass Spectrom. 2016, 30, 1-8

Copyright © 2015 John Wiley & Sons, Ltd.
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DW LE LE+DW

Figure1. Calculated differences in 3'*Nand 3'°C values and C:N ratios among treatments (deionized
water (DW)), lipid extraction (LE), lipid extraction combined with deionized water rinsing (LE+DW)
and untreated (Control) shark muscle tissue for each species. Solid grey circles are minimum and
maximum values for each species. Solid black circles and open black circles are mean values (+SD)
with significant and non-significant paired Student’s t-tests or Wilcoxon signed rank tests,
respectively (Table 3). For species codes and sample sizes, see Table 1.
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ABSTRACT: Comparative analysis of isotope values from different tissues can capture temporal
variation in the trophic and foraging behavior of difficult to study large marine predators, reveal-
ing either uniform or variable ecological roles over time. The isotopic values (3'*C and §'°N) of
dermis, and muscle tissue of silky Carcharhinus falciformis and blue sharks Prionace glauca sam-

Fig. 2. Comparison of §"C (open circle) and '*N (open diamond) values between skin and muscle tissue of (a,c) silky shark

Carchar hinus falciformis (n = 39) and (b,d) blue shark Prionace glauca (n = 26). The dashed black line depicts the 1:1 isotopic

relationship between the 2 tissues. The solid red lines indicate the regression slope for significant relationships, while the blue
dashed lines represent the 95% confidence intervals of the regression analysis

pled in the northeast central Pacific were analyzed to quantify ontogenetic inter- and intra-tissue
isotopic variation. Consistent differences in §'°N values occurred between dermis and muscle tis-
sue for both species (2.5 = 0.4%. and 2.1 = 0.3%., respectively), while tissue differences in §'*C
values were more variable between species (2.3 + 0.6%. and 0.7 + 0.6%., respectively), likely a
result of tissue composition. The overall 5*°N and 8'*C values of dermis and muscle were highly
correlated for blue sharks and for silky sharks with the exception of silky shark §'*C values. This
pattern indicates that dermis isotope values are able to provide a proxy for muscle tissue, similar
to that previously reported for fin, accepting dermis-specific diet-tissue discrimination factors.
Tissue-specific ontogenetic isotopic variation for the silky shark, and the low regression slope
value between dermis and muscle §'*C values, however, may suggest that dermis and muscle
tissue have different isotopic turnover rates. These data demonstrate that dermis yields valuable
isotope data to examine the trophic ecology and feeding/movement behavior of sharks, but
further work is required to address dermis-specific turnover rates and diet-tissue discrimination
factors.

KEY WORDS: Pelagic shark - Stable isotope - Dermis
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INTRODUCTION

In recent years, our understanding of the temporal
and spatial variation in trophic roles and foraging
dynamics of shark species has improved based on the
application of carbon and nitrogen stable isotopes
(Matich et al. 2010, 2011, Hussey et al. 2011, Kim et
al. 2012a). Compared to the instantaneous ‘snapshot’
of dietary information obtained from gut content
analysis, stable isotope analysis (SIA) allows exami-

*Corresponding author: ykli@shou.edu.cn

nation of feeding behaviors integrated over numer-
ous time periods (Martinez del Rio et al. 2009, Willis
et al. 2013). For example, the isotopic composition of
different metabolic tissues with diverse turnover
rates can provide dietary information integrated over
short (weeks, using plasma; Matich et al. 2011) to
long (months to years, using muscle; MacNeil et al.
2005) periods. Consequently, inter-tissue stable iso-
tope comparisons can examine dietary shifts and
variation in trophic position of species (MacNeil et al.

© The authors 2016. Open Access under Creative Commons by
Attribution Licence. Use, distribution and reproduction are un-
restricted. Authors and original publication must be credited
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Fig. 3. Relationship of (a,b) §'*C and (c,d) '°N values from paired samples of skin (solid circle and diamond) and muscle (open cir-
cle and diamond) and age for (a,c) silky shark Carcharhinus falaformis (n = 39) and (b,d) blue shark Prionace glauca (n= 26) sam-
pled in northeast central Pacific. Solid red lines indicate the regression slope for significant relationships, while the blue dashed
lines represent the 95 % confidence intervals of the regression analysis. The vertical black dashed lines indicate age at 50% maturity
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Sharks are considered to play important roles in structuring marnne ecosystems, consequently understanding
their trophic ecology and interactions with other marine predators is required. In the central Pacific Ocean,
whether the trophic roles of pelagic sharks are complementary or redundant to large teleost predators remains
unclear, In this study, stable carbon and nitrogen isotope analysis were used to examine the isotopic niche over-
lap of eight pelagic shark spedes and six pelagic teleost predators, including tuna and billfish, Large intra-specific
variation and minimal inter-specific varation in both &'"N and &'*C values were observed among sharks and
teleosts. Moreover, there was a high degree of trophic overdap among pelagic shark and teleost species, with
the exception of the blue shark, the 5'*C values of which indicated a much longer foraging time in the purely pe-
lagic waters, Moreover, although the stable isotopic data sugge sted that the pelagicsharksin the study area share
similar prey and habitats with other pelagic predators, such as tuna and billfish, blue sharks and shortfin mako
sharks did not show isotopic overlap with these predators. These data highlight the diverse roles among pelagic
sharks, supporting previous findings that this spedes complex is not trophically redundant; but further studies
on the diet and fine-scale habitat used are required to verify this hypothesis.

© 2016 Elsevier BV. All rights reserved.

1. Introduction

Pelagic sharks are primary bycatch species of longline fisheries oper-
ating in open ocean ecosystems and are prone to high fisheries mortal-
ity rates (Kitchell et al, 2002; Schindler et al., 2002). Their typically large
pectoral fins render them attractive to the shark fin industry, to which
they contribute a substantial percentage of total species traded (Clarke
etal, 2006). But as k-selected species, pelagic sharks possess several bi-
ological attributes (low growth rate, late maturity, and low fecundity)
that make them vulnerable to overfishing (White et al., 2012) and
limit their recovery potential (Walker, 1998). The standardized catch
rate of silky sharks (Carcharhinus falciformis) in the North Pacific
Ocean, for example, was estimated to have deareased by 91.7% between
1950 and 1997 with the onset of commercial fishing (Baum and Myers,
2004). Pelagic sharks also range across poorly monitored regions
(Gilman et al., 2008), therefore the annual global catch rate reported
to the Food and Agriculture Organization of the United Nations (FAO)
is likely largely underestimated (Clarke et al., 2006; Ferretti et al.,
2010). More than 50% of pelagic species are currently considered threat-
ened worldwide (Dulvy et al., 2008).

Conservation and management of pelagic sharks involves two key
issues, consideration of their unique evolutionary characteristics in

* Corresponding author
E-mai address: xjdai@showedwen (X. Dai)

hitp ¢/ doi.org/10. 101 6/ jembe 2016.04.013
0022-0981/© 2016 Elsevier BV. All rights reserved.

relation to biodiversity importance and global conservation priorities
and mitigating over exploitation in fisheries to maintain the integrity
of their ecological role in marine food webs (Kitchell et al,, 2002).
Most large shark species feed at or near the top of marine food webs;
however, their trophic roles are thought to vary significantly among
ecosystems, species and contexts (Heithaus et al., 2008; Kiszka et al.,
2015). Declines in the abundance of large sharks have the potential to
induce trophic cascades in coastal and demersal ecosystems (Ferretti
et al, 2010), yet it remains unclear how their removal impacts the tro-
phic structure of pelagic communities in open-ocean ecosystems
(Ward and Myers, 2005; Kiszka et al,, 2015)

To date, only one study has directly examined the effect of removing
large pelagic sharks on ecosystem structure, finding conflicting results.
Through an Ecopath with Ecosim model, Kitchell et al (2002) identified
limited effects of removing pelagic sharks on the overall fish community
when assigning a standardized trophic level of approximately 4.5.
Model results suggested compensatory effects of shark removal by
other large teleost predators that have faster biomass turnover rates,
such as tuna and billfish. When variable trophic roles among large and
small sharks were considered within the model, however, non-linear ef-
fedts were observed with negative consequences for ecosystem struc-
ture. Inter-specific variation in habitat use (Rabehagasoa et al., 2012),
diet (Kiszka et al,, 2014) and trophic complexity (Kiszka et al., 2015)
is observed among pelagic sharks supporting the latter model predic-
tions, but uncertainties over their ecological role/s remain. Specifically,
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Fig. 2. A biplot of 6'C and 6'°N values (mean = SD) for pelagic sharks (open diamonds)

the large predatory teleosts (black diamonds) of the northeast central Pacific pelagic
community.
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